\(\int \frac {x^4 \sqrt {c+d x^2}}{(a+b x^2)^2} \, dx\) [731]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 150 \[ \int \frac {x^4 \sqrt {c+d x^2}}{\left (a+b x^2\right )^2} \, dx=\frac {x \sqrt {c+d x^2}}{b^2}-\frac {x^3 \sqrt {c+d x^2}}{2 b \left (a+b x^2\right )}-\frac {\sqrt {a} (3 b c-4 a d) \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{2 b^3 \sqrt {b c-a d}}+\frac {(b c-4 a d) \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 b^3 \sqrt {d}} \]

[Out]

1/2*(-4*a*d+b*c)*arctanh(x*d^(1/2)/(d*x^2+c)^(1/2))/b^3/d^(1/2)-1/2*(-4*a*d+3*b*c)*arctan(x*(-a*d+b*c)^(1/2)/a
^(1/2)/(d*x^2+c)^(1/2))*a^(1/2)/b^3/(-a*d+b*c)^(1/2)+x*(d*x^2+c)^(1/2)/b^2-1/2*x^3*(d*x^2+c)^(1/2)/b/(b*x^2+a)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {478, 596, 537, 223, 212, 385, 211} \[ \int \frac {x^4 \sqrt {c+d x^2}}{\left (a+b x^2\right )^2} \, dx=-\frac {\sqrt {a} (3 b c-4 a d) \arctan \left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{2 b^3 \sqrt {b c-a d}}+\frac {(b c-4 a d) \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 b^3 \sqrt {d}}-\frac {x^3 \sqrt {c+d x^2}}{2 b \left (a+b x^2\right )}+\frac {x \sqrt {c+d x^2}}{b^2} \]

[In]

Int[(x^4*Sqrt[c + d*x^2])/(a + b*x^2)^2,x]

[Out]

(x*Sqrt[c + d*x^2])/b^2 - (x^3*Sqrt[c + d*x^2])/(2*b*(a + b*x^2)) - (Sqrt[a]*(3*b*c - 4*a*d)*ArcTan[(Sqrt[b*c
- a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(2*b^3*Sqrt[b*c - a*d]) + ((b*c - 4*a*d)*ArcTanh[(Sqrt[d]*x)/Sqrt[c + d*
x^2]])/(2*b^3*Sqrt[d])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 478

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*n*(p + 1))), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 596

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
 x_Symbol] :> Simp[f*g^(n - 1)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*d*(m + n*(p + q +
 1) + 1))), x] - Dist[g^n/(b*d*(m + n*(p + q + 1) + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*
f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*(f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]

Rubi steps \begin{align*} \text {integral}& = -\frac {x^3 \sqrt {c+d x^2}}{2 b \left (a+b x^2\right )}+\frac {\int \frac {x^2 \left (3 c+4 d x^2\right )}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{2 b} \\ & = \frac {x \sqrt {c+d x^2}}{b^2}-\frac {x^3 \sqrt {c+d x^2}}{2 b \left (a+b x^2\right )}-\frac {\int \frac {4 a c d-2 d (b c-4 a d) x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{4 b^2 d} \\ & = \frac {x \sqrt {c+d x^2}}{b^2}-\frac {x^3 \sqrt {c+d x^2}}{2 b \left (a+b x^2\right )}+\frac {(b c-4 a d) \int \frac {1}{\sqrt {c+d x^2}} \, dx}{2 b^3}-\frac {(a (3 b c-4 a d)) \int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{2 b^3} \\ & = \frac {x \sqrt {c+d x^2}}{b^2}-\frac {x^3 \sqrt {c+d x^2}}{2 b \left (a+b x^2\right )}+\frac {(b c-4 a d) \text {Subst}\left (\int \frac {1}{1-d x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{2 b^3}-\frac {(a (3 b c-4 a d)) \text {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{2 b^3} \\ & = \frac {x \sqrt {c+d x^2}}{b^2}-\frac {x^3 \sqrt {c+d x^2}}{2 b \left (a+b x^2\right )}-\frac {\sqrt {a} (3 b c-4 a d) \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{2 b^3 \sqrt {b c-a d}}+\frac {(b c-4 a d) \tanh ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 b^3 \sqrt {d}} \\ \end{align*}

Mathematica [A] (verified)

Time = 10.12 (sec) , antiderivative size = 134, normalized size of antiderivative = 0.89 \[ \int \frac {x^4 \sqrt {c+d x^2}}{\left (a+b x^2\right )^2} \, dx=\frac {\frac {b x \left (2 a+b x^2\right ) \sqrt {c+d x^2}}{a+b x^2}+\frac {\sqrt {a} (-3 b c+4 a d) \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {b c-a d}}+\frac {(b c-4 a d) \log \left (d x+\sqrt {d} \sqrt {c+d x^2}\right )}{\sqrt {d}}}{2 b^3} \]

[In]

Integrate[(x^4*Sqrt[c + d*x^2])/(a + b*x^2)^2,x]

[Out]

((b*x*(2*a + b*x^2)*Sqrt[c + d*x^2])/(a + b*x^2) + (Sqrt[a]*(-3*b*c + 4*a*d)*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[
a]*Sqrt[c + d*x^2])])/Sqrt[b*c - a*d] + ((b*c - 4*a*d)*Log[d*x + Sqrt[d]*Sqrt[c + d*x^2]])/Sqrt[d])/(2*b^3)

Maple [A] (verified)

Time = 3.22 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.97

method result size
pseudoelliptic \(-\frac {\frac {-\sqrt {d \,x^{2}+c}\, b x \sqrt {d}+4 \,\operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}}{x \sqrt {d}}\right ) a d -\operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}}{x \sqrt {d}}\right ) b c}{\sqrt {d}}+a \left (-\frac {b \sqrt {d \,x^{2}+c}\, x}{b \,x^{2}+a}-\frac {\left (4 a d -3 b c \right ) \operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}\, a}{x \sqrt {\left (a d -b c \right ) a}}\right )}{\sqrt {\left (a d -b c \right ) a}}\right )}{2 b^{3}}\) \(145\)
risch \(\frac {x \sqrt {d \,x^{2}+c}}{2 b^{2}}-\frac {\frac {\left (4 a d -b c \right ) \ln \left (x \sqrt {d}+\sqrt {d \,x^{2}+c}\right )}{b \sqrt {d}}-\frac {\left (a d -b c \right ) a \left (\frac {b \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{\left (a d -b c \right ) \left (x +\frac {\sqrt {-a b}}{b}\right )}+\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}\right )}{2 b^{2}}-\frac {\left (a d -b c \right ) a \left (\frac {b \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{\left (a d -b c \right ) \left (x -\frac {\sqrt {-a b}}{b}\right )}-\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}\right )}{2 b^{2}}+\frac {a \left (5 a d -3 b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{2 \sqrt {-a b}\, b \sqrt {-\frac {a d -b c}{b}}}-\frac {a \left (5 a d -3 b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{2 \sqrt {-a b}\, b \sqrt {-\frac {a d -b c}{b}}}}{2 b^{2}}\) \(907\)
default \(\text {Expression too large to display}\) \(2002\)

[In]

int(x^4*(d*x^2+c)^(1/2)/(b*x^2+a)^2,x,method=_RETURNVERBOSE)

[Out]

-1/2/b^3*((-(d*x^2+c)^(1/2)*b*x*d^(1/2)+4*arctanh((d*x^2+c)^(1/2)/x/d^(1/2))*a*d-arctanh((d*x^2+c)^(1/2)/x/d^(
1/2))*b*c)/d^(1/2)+a*(-b*(d*x^2+c)^(1/2)*x/(b*x^2+a)-(4*a*d-3*b*c)/((a*d-b*c)*a)^(1/2)*arctanh((d*x^2+c)^(1/2)
/x*a/((a*d-b*c)*a)^(1/2))))

Fricas [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 1002, normalized size of antiderivative = 6.68 \[ \int \frac {x^4 \sqrt {c+d x^2}}{\left (a+b x^2\right )^2} \, dx=\left [-\frac {2 \, {\left (a b c - 4 \, a^{2} d + {\left (b^{2} c - 4 \, a b d\right )} x^{2}\right )} \sqrt {d} \log \left (-2 \, d x^{2} + 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right ) + {\left (3 \, a b c d - 4 \, a^{2} d^{2} + {\left (3 \, b^{2} c d - 4 \, a b d^{2}\right )} x^{2}\right )} \sqrt {-\frac {a}{b c - a d}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} + 4 \, {\left ({\left (b^{2} c^{2} - 3 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{3} - {\left (a b c^{2} - a^{2} c d\right )} x\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {a}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) - 4 \, {\left (b^{2} d x^{3} + 2 \, a b d x\right )} \sqrt {d x^{2} + c}}{8 \, {\left (b^{4} d x^{2} + a b^{3} d\right )}}, -\frac {4 \, {\left (a b c - 4 \, a^{2} d + {\left (b^{2} c - 4 \, a b d\right )} x^{2}\right )} \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) + {\left (3 \, a b c d - 4 \, a^{2} d^{2} + {\left (3 \, b^{2} c d - 4 \, a b d^{2}\right )} x^{2}\right )} \sqrt {-\frac {a}{b c - a d}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} + 4 \, {\left ({\left (b^{2} c^{2} - 3 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{3} - {\left (a b c^{2} - a^{2} c d\right )} x\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {a}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) - 4 \, {\left (b^{2} d x^{3} + 2 \, a b d x\right )} \sqrt {d x^{2} + c}}{8 \, {\left (b^{4} d x^{2} + a b^{3} d\right )}}, \frac {{\left (3 \, a b c d - 4 \, a^{2} d^{2} + {\left (3 \, b^{2} c d - 4 \, a b d^{2}\right )} x^{2}\right )} \sqrt {\frac {a}{b c - a d}} \arctan \left (-\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {a}{b c - a d}}}{2 \, {\left (a d x^{3} + a c x\right )}}\right ) - {\left (a b c - 4 \, a^{2} d + {\left (b^{2} c - 4 \, a b d\right )} x^{2}\right )} \sqrt {d} \log \left (-2 \, d x^{2} + 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right ) + 2 \, {\left (b^{2} d x^{3} + 2 \, a b d x\right )} \sqrt {d x^{2} + c}}{4 \, {\left (b^{4} d x^{2} + a b^{3} d\right )}}, -\frac {2 \, {\left (a b c - 4 \, a^{2} d + {\left (b^{2} c - 4 \, a b d\right )} x^{2}\right )} \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) - {\left (3 \, a b c d - 4 \, a^{2} d^{2} + {\left (3 \, b^{2} c d - 4 \, a b d^{2}\right )} x^{2}\right )} \sqrt {\frac {a}{b c - a d}} \arctan \left (-\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {a}{b c - a d}}}{2 \, {\left (a d x^{3} + a c x\right )}}\right ) - 2 \, {\left (b^{2} d x^{3} + 2 \, a b d x\right )} \sqrt {d x^{2} + c}}{4 \, {\left (b^{4} d x^{2} + a b^{3} d\right )}}\right ] \]

[In]

integrate(x^4*(d*x^2+c)^(1/2)/(b*x^2+a)^2,x, algorithm="fricas")

[Out]

[-1/8*(2*(a*b*c - 4*a^2*d + (b^2*c - 4*a*b*d)*x^2)*sqrt(d)*log(-2*d*x^2 + 2*sqrt(d*x^2 + c)*sqrt(d)*x - c) + (
3*a*b*c*d - 4*a^2*d^2 + (3*b^2*c*d - 4*a*b*d^2)*x^2)*sqrt(-a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^
2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 + 4*((b^2*c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^3 - (a*b*c^2 - a^2*c
*d)*x)*sqrt(d*x^2 + c)*sqrt(-a/(b*c - a*d)))/(b^2*x^4 + 2*a*b*x^2 + a^2)) - 4*(b^2*d*x^3 + 2*a*b*d*x)*sqrt(d*x
^2 + c))/(b^4*d*x^2 + a*b^3*d), -1/8*(4*(a*b*c - 4*a^2*d + (b^2*c - 4*a*b*d)*x^2)*sqrt(-d)*arctan(sqrt(-d)*x/s
qrt(d*x^2 + c)) + (3*a*b*c*d - 4*a^2*d^2 + (3*b^2*c*d - 4*a*b*d^2)*x^2)*sqrt(-a/(b*c - a*d))*log(((b^2*c^2 - 8
*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 + 4*((b^2*c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^3
 - (a*b*c^2 - a^2*c*d)*x)*sqrt(d*x^2 + c)*sqrt(-a/(b*c - a*d)))/(b^2*x^4 + 2*a*b*x^2 + a^2)) - 4*(b^2*d*x^3 +
2*a*b*d*x)*sqrt(d*x^2 + c))/(b^4*d*x^2 + a*b^3*d), 1/4*((3*a*b*c*d - 4*a^2*d^2 + (3*b^2*c*d - 4*a*b*d^2)*x^2)*
sqrt(a/(b*c - a*d))*arctan(-1/2*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sqrt(a/(b*c - a*d))/(a*d*x^3 + a*c*x
)) - (a*b*c - 4*a^2*d + (b^2*c - 4*a*b*d)*x^2)*sqrt(d)*log(-2*d*x^2 + 2*sqrt(d*x^2 + c)*sqrt(d)*x - c) + 2*(b^
2*d*x^3 + 2*a*b*d*x)*sqrt(d*x^2 + c))/(b^4*d*x^2 + a*b^3*d), -1/4*(2*(a*b*c - 4*a^2*d + (b^2*c - 4*a*b*d)*x^2)
*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) - (3*a*b*c*d - 4*a^2*d^2 + (3*b^2*c*d - 4*a*b*d^2)*x^2)*sqrt(a/(b
*c - a*d))*arctan(-1/2*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sqrt(a/(b*c - a*d))/(a*d*x^3 + a*c*x)) - 2*(b
^2*d*x^3 + 2*a*b*d*x)*sqrt(d*x^2 + c))/(b^4*d*x^2 + a*b^3*d)]

Sympy [F]

\[ \int \frac {x^4 \sqrt {c+d x^2}}{\left (a+b x^2\right )^2} \, dx=\int \frac {x^{4} \sqrt {c + d x^{2}}}{\left (a + b x^{2}\right )^{2}}\, dx \]

[In]

integrate(x**4*(d*x**2+c)**(1/2)/(b*x**2+a)**2,x)

[Out]

Integral(x**4*sqrt(c + d*x**2)/(a + b*x**2)**2, x)

Maxima [F]

\[ \int \frac {x^4 \sqrt {c+d x^2}}{\left (a+b x^2\right )^2} \, dx=\int { \frac {\sqrt {d x^{2} + c} x^{4}}{{\left (b x^{2} + a\right )}^{2}} \,d x } \]

[In]

integrate(x^4*(d*x^2+c)^(1/2)/(b*x^2+a)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 + c)*x^4/(b*x^2 + a)^2, x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 283 vs. \(2 (124) = 248\).

Time = 0.31 (sec) , antiderivative size = 283, normalized size of antiderivative = 1.89 \[ \int \frac {x^4 \sqrt {c+d x^2}}{\left (a+b x^2\right )^2} \, dx=\frac {\sqrt {d x^{2} + c} x}{2 \, b^{2}} + \frac {{\left (3 \, a b c \sqrt {d} - 4 \, a^{2} d^{\frac {3}{2}}\right )} \arctan \left (\frac {{\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt {a b c d - a^{2} d^{2}}}\right )}{2 \, \sqrt {a b c d - a^{2} d^{2}} b^{3}} - \frac {{\left (b c - 4 \, a d\right )} \log \left ({\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2}\right )}{4 \, b^{3} \sqrt {d}} - \frac {{\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} a b c \sqrt {d} - 2 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} a^{2} d^{\frac {3}{2}} - a b c^{2} \sqrt {d}}{{\left ({\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{4} b - 2 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} b c + 4 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} a d + b c^{2}\right )} b^{3}} \]

[In]

integrate(x^4*(d*x^2+c)^(1/2)/(b*x^2+a)^2,x, algorithm="giac")

[Out]

1/2*sqrt(d*x^2 + c)*x/b^2 + 1/2*(3*a*b*c*sqrt(d) - 4*a^2*d^(3/2))*arctan(1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*
b - b*c + 2*a*d)/sqrt(a*b*c*d - a^2*d^2))/(sqrt(a*b*c*d - a^2*d^2)*b^3) - 1/4*(b*c - 4*a*d)*log((sqrt(d)*x - s
qrt(d*x^2 + c))^2)/(b^3*sqrt(d)) - ((sqrt(d)*x - sqrt(d*x^2 + c))^2*a*b*c*sqrt(d) - 2*(sqrt(d)*x - sqrt(d*x^2
+ c))^2*a^2*d^(3/2) - a*b*c^2*sqrt(d))/(((sqrt(d)*x - sqrt(d*x^2 + c))^4*b - 2*(sqrt(d)*x - sqrt(d*x^2 + c))^2
*b*c + 4*(sqrt(d)*x - sqrt(d*x^2 + c))^2*a*d + b*c^2)*b^3)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 \sqrt {c+d x^2}}{\left (a+b x^2\right )^2} \, dx=\int \frac {x^4\,\sqrt {d\,x^2+c}}{{\left (b\,x^2+a\right )}^2} \,d x \]

[In]

int((x^4*(c + d*x^2)^(1/2))/(a + b*x^2)^2,x)

[Out]

int((x^4*(c + d*x^2)^(1/2))/(a + b*x^2)^2, x)